107 research outputs found

    Insight into the sialome of the castor bean tick, Ixodes ricinus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there have been several sialome projects revealing transcripts expressed in the salivary glands of ticks, which are important vectors of several human diseases. Here, we focused on the sialome of the European vector of Lyme disease, <it>Ixodes ricinus</it>.</p> <p>Results</p> <p>In the attempt to describe expressed genes and their dynamics throughout the feeding period, we constructed cDNA libraries from four different feeding stages of <it>Ixodes ricinus </it>females: unfed, 24 hours after attachment, four (partially fed) and seven days (fully engorged) after attachment. Approximately 600 randomly selected clones from each cDNA library were sequenced and analyzed. From a total 2304 sequenced clones, 1881 sequences forming 1274 clusters underwent subsequent functional analysis using customized bioinformatics software. Clusters were sorted according to their predicted function and quantitative comparison among the four libraries was made. We found several groups of over-expressed genes associated with feeding that posses a secretion signal and may be involved in tick attachment, feeding or evading the host immune system. Many transcripts clustered into families of related genes with stage-specific expression. Comparison to <it>Ixodes scapularis </it>and <it>I. pacificus </it>transcripts was made.</p> <p>Conclusion</p> <p>In addition to a large number of homologues of the known transcripts, we obtained several novel predicted protein sequences. Our work contributes to the growing list of proteins associated with tick feeding and sheds more light on the dynamics of the gene expression during tick feeding. Additionally, our results corroborate previous evidence of gene duplication in the evolution of ticks.</p

    Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sand fly saliva plays an important role in blood feeding and <it>Leishmania </it>transmission as it was shown to increase parasite virulence. On the other hand, immunity to salivary components impedes the establishment of infection. Therefore, it is most desirable to gain a deeper insight into the composition of saliva in sand fly species which serve as vectors of various forms of leishmaniases. In the present work, we focused on <it>Phlebotomus (Adlerius) arabicus</it>, which was recently shown to transmit <it>Leishmania tropica</it>, the causative agent of cutaneous leishmaniasis in Israel.</p> <p>Results</p> <p>A cDNA library from salivary glands of <it>P. arabicus </it>females was constructed and transcripts were sequenced and analyzed. The most abundant protein families identified were SP15-like proteins, ParSP25-like proteins, D7-related proteins, yellow-related proteins, PpSP32-like proteins, antigen 5-related proteins, and 34 kDa-like proteins. Sequences coding for apyrases, hyaluronidase and other putative secreted enzymes were also represented, including endonuclease, phospholipase, pyrophosphatase, amylase and trehalase. Mass spectrometry analysis confirmed the presence of 20 proteins predicted to be secreted in the salivary proteome. Humoral response of mice bitten by <it>P. arabicus </it>to salivary antigens was assessed and many salivary proteins were determined to be antigenic.</p> <p>Conclusion</p> <p>This transcriptomic analysis of <it>P. arabicus </it>salivary glands is the first description of salivary proteins of a sand fly in the subgenus <it>Adlerius</it>. Proteomic analysis of <it>P. arabicus </it>salivary glands produced the most comprehensive account in a single sand fly species to date. Detailed information and phylogenetic relationships of the salivary proteins are provided, expanding the knowledge base of molecules that are likely important factors of sand fly-host and sand fly-<it>Leishmania </it>interactions. Enzymatic and immunological investigations further demonstrate the value of functional transcriptomics in advancing biological and epidemiological research that can impact leishmaniasis.</p

    Incrimination of Phlebotomus kandelakii and Phlebotomus balcanicus as Vectors of Leishmania infantum in Tbilisi, Georgia

    Get PDF
    A survey of potential vector sand flies was conducted in the neighboring suburban communities of Vake and Mtatsminda districts in an active focus of visceral Leishmaniasis (VL) in Tbilisi, Georgia. Using light and sticky-paper traps, 1,266 male and 1,179 female sand flies were collected during 2006–2008. Five Phlebotomus species of three subgenera were collected: Phlebotomus balcanicus Theodor and Phlebotomus halepensis Theodor of the subgenus Adlerius; Phlebotomus kandelakii Shchurenkova and Phlebotomus wenyoni Adler and Theodor of the subgenus Larroussius; Phlebotomus sergenti Perfil'ev of the subgenus Paraphlebotomus. Phlebotomus sergenti (35.1%) predominated in Vake, followed by P. kandelakii (33.5%), P. balcanicus (18.9%), P. halepensis (12.2%), and P. wenyoni (0.3%). In Mtatsminda, P. kandelakii (76.8%) comprised over three fourths of collected sand flies, followed by P. sergenti (12.6%), P. balcanicus (5.8%), P. halepensis (3.7%), and P. wenyoni (1.1%). The sand fly season in Georgia is exceptionally short beginning in early June, peaking in July and August, then declining to zero in early September. Of 659 female sand flies examined for Leishmania, 12 (1.8%) specimens without traces of blood were infected including 10 of 535 P. kandelakii (1.9%) and two of 40 P. balcanicus (5.0%). Six isolates were successfully cultured and characterized as Leishmania by PCR. Three isolates from P. kandelakii (2) and P. balcanicus (1) were further identified as L. infantum using sequence alignment of the 70 kDa heat-shock protein gene. Importantly, the sand fly isolates showed a high percent identity (99.8%–99.9%) to human and dog isolates from the same focus, incriminating the two sand fly species as vectors. Blood meal analysis showed that P. kandelakii preferentially feeds on dogs (76%) but also feeds on humans. The abundance, infection rate and feeding behavior of P. kandelakii and the infection rate in P. balcanicus establish these species as vectors in the Tbilisi VL focus

    Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sandflies, the blood meal is responsible for the induction of several physiologic processes that culminate in egg development and maturation. During blood feeding, infected sandflies are also able to transmit the parasite Leishmania to a suitable host. Many blood-induced molecules play significant roles during Leishmania development in the sandfly midgut, including parasite killing within the endoperitrophic space. In this work, we randomly sequenced transcripts from three distinct high quality full-length female <it>Phlebotomus papatasi </it>midgut-specific cDNA libraries from sugar-fed, blood-fed and <it>Leishmania major</it>-infected sandflies. Furthermore, we compared the transcript expression profiles from the three different cDNA libraries by customized bioinformatics analysis and validated these findings by semi-quantitative PCR and real-time PCR.</p> <p>Results</p> <p>Transcriptome analysis of 4010 cDNA clones resulted in the identification of the most abundant <it>P. papatasi </it>midgut-specific transcripts. The identified molecules included those with putative roles in digestion and peritrophic matrix formation, among others. Moreover, we identified sandfly midgut transcripts that are expressed only after a blood meal, such as microvilli associated-like protein (<it>PpMVP1</it>, <it>PpMVP2 </it>and <it>PpMVP3</it>), a peritrophin (<it>PpPer1</it>), trypsin 4 (<it>PpTryp4</it>), chymotrypsin <it>PpChym2</it>, and two unknown proteins. Of interest, many of these overabundant transcripts such as <it>PpChym2</it>, <it>PpMVP1</it>, <it>PpMVP2, PpPer1 </it>and <it>PpPer2 </it>were of lower abundance when the sandfly was given a blood meal in the presence of <it>L. major</it>.</p> <p>Conclusion</p> <p>This tissue-specific transcriptome analysis provides a comprehensive look at the repertoire of transcripts present in the midgut of the sandfly <it>P. papatasi</it>. Furthermore, the customized bioinformatic analysis allowed us to compare and identify the overall transcript abundance from sugar-fed, blood-fed and Leishmania-infected sandflies. The suggested upregulation of specific transcripts in a blood-fed cDNA library were validated by real-time PCR, suggesting that this customized bioinformatic analysis is a powerful and accurate tool useful in analysing expression profiles from different cDNA libraries. Additionally, the findings presented in this work suggest that the Leishmania parasite is modulating key enzymes or proteins in the gut of the sandfly that may be beneficial for its establishment and survival.</p

    Bullous Allergic Hypersensitivity to Bed Bug Bites Mediated by IgE against Salivary Nitrophorin

    Get PDF
    In Central Europe, bites from the common bed bug (Cimex lectularius) are nowadays rather uncommon. Nevertheless, infestations are sometimes observed in old framehouses and by immigration due to international travel and migration. The clinical picture of bug bites substantially varies between individuals, depending upon previous exposure and the degree of an immune response. The host immune response and potential protein antigens present in the saliva of C. lectularius or specific antibodies have not been characterized thus far. We describe a patient with bullous bite reactions after sequential contact with C. lectularius over a period of 1 year. In skin tests, we observed immediate reactions to the salivary gland solution of C. lectularius, which were followed by a pronounced partially blistering late-phase response. Immunoblot analysis of the patient's serum with salivary gland extracts and recombinant C. lectularius saliva proteins revealed specific IgE antibodies against the 32kDa C. lectularius nitrophorin, but not to 37kDa C. lectularius apyrase. Our data demonstrate that bullous cimicosis may be the late-phase response of an allergic IgE-mediated hypersensitivity to C. lectularius nitrophorin

    Epidemiologic Aspects of an Emerging Focus of Visceral Leishmaniasis in Tbilisi, Georgia

    Get PDF
    Visceral leishmaniasis (VL) has emerged as a public health problem in Tbilisi, the capital of Georgia. Dogs are the main infection reservoirs for transmission by sand flies of Leishmania infantum to humans, many of whom may become infected without developing disease. Since majority of cases are in children we were interested to know the rate of infection in children and in dogs living within the area where cases of VL have been found, and what factors may affect the risk of infection. Using a test that detects the presence of antibodies in blood as a marker of infection, 7.3% of 4,250 children examined were positive at the baseline survey, and 6% became positive after one year. Overall, 18.2% of domestic and 15.3% of stray dogs were seropositive. The infected children were more apt to live in areas where clustered flying insects and stray dogs were observed, and were far more likely to have experienced a persistent fever in the 6 months before the survey. We conclude that there is very active transmission of L. infantum to both humans and dogs in Tbilisi, and that children remain at high risk of developing clinical disease and sub-clinical infection

    The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. <it>Leishmania </it>development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female <it>Phlebotomus perniciosus </it>and compared the transcript expression profiles.</p> <p>Results</p> <p>A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (<it>PperPer1</it>), two chymotrypsin-like proteins (<it>PperChym1 </it>and <it>PperChym2</it>), a putative trypsin (<it>PperTryp3</it>) and four putative microvillar proteins (<it>PperMVP1</it>, <it>2</it>, <it>4 </it>and <it>5</it>). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (<it>PperTryp1 </it>and <it>PperTryp2</it>), a chymotrypsin (<it>PperChym3</it>) and a microvillar protein (<it>PperMVP3</it>). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in <it>Leishmania infantum</it>-infected and uninfected sand flies, which identified the <it>L. infantum</it>-induced down regulation of <it>PperTryp3 </it>at 24 hours post-blood meal.</p> <p>Conclusion</p> <p>This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of <it>P. perniciosus</it>, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that <it>L. infantum </it>infection can reduce the transcript abundance of trypsin <it>PperTryp3 </it>in the midgut of <it>P. perniciosus</it>.</p

    Salivary Gland Transcriptomes and Proteomes of Phlebotomus tobbi and Phlebotomus sergenti, Vectors of Leishmaniasis

    Get PDF
    Phlebotomine female sand flies require a blood meal for egg development, and it is during the blood feeding that pathogens can be transmitted to a host. Leishmania parasites are among these pathogens and can cause disfiguring cutaneous or even possibly fatal visceral disease. The Leishmania parasites are deposited into the bite wound along with the sand fly saliva. The components of the saliva have many pharmacologic and immune functions important in blood feeding and disease establishment. In this article, the authors identify and investigate the protein components of saliva of two important vectors of leishmaniasis, Phlebotomus tobbi and P. sergenti, by sequencing the transcriptomes of the salivary glands. We then compared the predicted protein sequences of these salivary proteins to those of other bloodsucking insects to elucidate the similarity in composition, structure, and enzymatic activity. Finally, this descriptive analysis of P. tobbi and P. sergenti transcriptomes can aid future research in identifying molecules for epidemiologic assays and in investigating sand fly-host interactions

    Analysis of salivary gland transcripts of the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis

    Get PDF
    The saliva of blood sucking insects contains potent pharmacologically active components that assist them in counteracting the host hemostatic and inflammatory systems during blood feeding. In addition, sand fly salivary proteins affect host immunity and have the potential to be a vaccine against Leishmania infection. In the present study, the salivary gland transcripts of Lutzomyia (Lu.) ayacuchensis, a vector of cutaneous leishmaniasis in Ecuadorian and Peruvian Andes, were analyzed by sequencing randomly selected clones of the salivary gland cDNA library of this sand fly. This resulted in the identification of the most abundant transcripts coding for secreted proteins. These proteins were homologous to the salivary molecules present in other sand flies including the RGD-containing peptide, PpSP15/SL1 family protein, yellow-related protein, putative apyrase, antigen 5-related protein, D7 family protein, and 27 kDa salivary protein. Of note, homologues of maxadilan, an active vasodilator abundantly present in saliva of Lu. longipalpis, were not identified. This analysis is the first description of salivary proteins from a sand fly of the subgenus Helcocyrtomyia and from vector of cutaneous leishmaniasis in the New World. The present analysis will provide further insights into the evolution of salivary components in blood sucking arthropods

    Salivary lipocalin family proteins from Panstrongylus chinai, a vector of Chagas disease

    No full text
    The dataset in this report is related to the research article with the title: âSalivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas diseaseâ (Kato et al., 2017) [1]. Lipocalin family proteins were identified as the dominant component in P. chinai saliva, and phylogenetic analysis of the salivary lipocalins resulted in the formation of five major clades. For further characterization, each clade of P. chinai lipocalin was s alignment and phylogenetic analyses together with homologous triatomine lipocalins; pallidipin 2, an inhibitor of collagen-induced platelet aggregation identified from saliva of Triatoma pallidipennis (clade I), pallidipin-like salivary lipocalin from Triatoma dimidiata (clade II), salivary lipocalin from T. dimidiata (clade III), triatin-like salivary lipocalin identified in the saliva of T. dimidiata (clade IV), and lipocalin-like TiLipo37 from Triatoma infestans (clade V). Keywords: Panstrongylus chinai, Saliva, Lipocalin, Transcriptom
    corecore